STABILITY OF A NONSTATIONARY ROUND JET
OF AN IDEAL INCOMPRESSIBLE FLUID

V. K. Andreev - UDC 532.5

The stability of transient flow in a cylinder of an ideal incompressible fluid with a free
boundary is studied. There are 20 different cases of the behavior of small disturbances as
a function of the parameters of the problem. In particular, if surface tension is not taken
into account a round jet is stable with respect to axially symmetrical disturbances, but the
introduction of capillary forces leads to a strong instability.

The stability of nonstationary flow in a strip of ideal incompressible fluid with a linear velocity field
was examined in [1]. This flow proved to be unstable when surface tension was not taken into account,
while the introduction of surface tension stabilizes the flow.

The general problem of the stability of nonstationary currents of an ideal incompressible fluid with a
free boundary was formulated in [2] by L. V. Ovsyannikov. Examples demonstrating the difficulty of study-
ing instability are also presented there.

The case when the free boundary has the form of an ellipse was analyzed in [3]. It develops that if a
standard in L, of the disturbance potential is taken as the measure of the stability, the flow is stable. But
if the stability is judged by the deviation of the free boundary from its undisturbed state, the movement is
unstable.

The stability of nonstationary flow in a cylinder of ideal incompressible fluid with a free boundary is
examined here.

1. Formulation of Problem

A region Q, filled by an ideal incompressible fluid, is represented by the cylinder 0 < z < h, x%+
y? < R% Here, x, v, and z are Euler coordinates. The cylinder is bounded by two impenetrable walls. The
lateral surface G is free and the pressure undergoes a discontinuity at G: p—p; = o/R, p; = const, and ¢ is
the coefficient of surface tension. The constant p; is taken as equal to zero without restriction. At the
time t = 0 one of the walls suddenly begins to move with a velocity V = const, while the other remains sta-
tionary.

The basic solution in the Lagrange coordinates %, n, ¢ has the form [2]

z=af, y=o0y, z=0a"%

p =00" (R* — 8 — 0% + o/ Ra 1.1)
a={1+%)"" w=V/h

A prime denotes differentiation with respect to t- For all t = 0 the free boundary is the round cylinder
0 <J <h, 2+ n*= R’ With an increase in t the cylinder Q contracts toward the axis x =y = 0 for » > 0,
while for % < 0 it expands to infinity in a time t* = =1/,
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Let us examine another solution in the region Q, but with converted initial functions

Po* (8) = 90 (§) + Do (8)y ADy =0 1.2)

We set
t*=x4X, p*=¢+xX+@

Then the problem of the evolution of disturbances in the basic solution, which takes place under the
influence of a small disturbance in the initial function (1.2), in the linear approximation has the form [2]

divMM*1Vo =0 Ee9 .3)
t
O+ P+ x MMM -1V0d =0 EeT) 1.4)
J \
O =D, AD,=0 (¢=0) (1.5)

Here P is the linear section of increases in the function a(Rf1 + R{i); Ry and R, are the principal
radii of'curvature of the normal cross sections at the given point of the disturbed surface; M is the Jaco-
bian transformation matrix x = x(, t); and from (1.1) M = M* = diag (o, @, ™).

We change to the cylindrical coordinates p, 9, & through the equations

E=pecosB,n=0psinb, =
Then Eq. (1.3) gives

D + 7D, +072Pgg + 0Dy =0 (p< R) @.6)

From (1.4) we obtain
!
(DI—I—P—}—aa”pS-:T(I)pdt:O 0 =R) .7

0

We shall describe the behavior of the disturbed boundary of the cylinder by the normal component of
vector X. According to [2],

t
X = M MM+ VO
4]

Then we obtain for the normal component

t
't
¥ =a§?®pdt 1.8)
The equation of the disturbed surface in cylindrical (Euler) coordinates has the form

p=~Ra+n*0, 31

An obvious expression for Ry 1y Ry ! can be found from the differential geometry according to well-
known equations. Then, in view of the smallness of n* and its derivatives, we carry out an expansion with
respect to it, and we retain in this expansion the terms linear with respect to n* and its derivatives

In Lagrange coordinates

*
B . 1.9)
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The first term of the expansion corresponds to a purely cylindrical surface.

2. Separation of Variables

We shall introduce the dimensionless variables through the equations

Py — —%— ad, e—t [ —»-—% y O — Ryt (2.1)

Then from (1.6) and (1.7), taking (1.9) into account, we obiain (the indices are omitted for simplicity)

R (2.2)
(Dpp+-:)—®p +"F%—(Dee T O =0 (I
) % ¢ 1 25 (1
. + 3020, — 2 (e { - oo+ B (- e da +
1 1
on %
b ) (a0 o oo
1 1
From (1.8) it follows that
. ? 1 )
NF= — Zh(ls-&T(Dp do. 2.4)
1

All the variables in Egs. (2.2) and (2.3) are isolated, which means that in the problem of stability one
can confine the investigation to partial solutions of the type

® = T(a)A(p) exp i(kL -+ AB) 2.5)

Here the wave number k =nm n=90,1, 2, .... The spectral mode of A is an integer. It follows from
(2.2) that Afp) =T, (sRh™ p) is a modified Bessel function of the first kind.

Let us introduce the dimensionless parameters

Rlh =8, ¢ /IR =y (2.6)

A =Th, A= S-g-. TI da, I, = % Iy, (kRIY) lyss
1

Using the notations (2.6) we finally obtain from (2.3) a system of linear differential equations of first
order:

dA,/da = — 4y (A* — 1) a~* 4 4 yB%a? 4- 3 @®] 4,
dA; I),I »
T = T A, 2.7)

It follows from (2.4) that the behavior of n* is described by the function A,. Evidently

W= — 2/10.8-512— D, da = — 2had,expi (kL - A0) 2.8)

3

3. Asymptotic Nature of Solutions

There are 20 different cases of the behavior of A, in dependence on the parameters 3, y,k, and A of
the problem. Here we shall present the asymptotic nature of A, (see, for example, [4]).
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Suppose a cylinder is contracting toward the axis x =y = 0, and the parameters y and k are not simul-
taneously equal to zero. Then

Ay~ o¥sfe, ch (28k Y 2707) 4- ¢, sh(2Bk V' 2y as)] (A =0) ©.1)
Ay~a"[cycos (4BEYV Y ™") + cysin (4B Yy ™™ =1 (3.2)
Ay~ @i e, 008 [, YV KR = D) 1 04] + e sin [ VAR — 7 0B} 0> G.3)

Suppose the cylinder is expanding to infinity, and y and k are not simultaneously equal to zero as be-
fore. In this case for A we have

Ay ~ o7 ey cos (¥, SHB a*%) + ¢y sin (*f, V BiB )] (3.4)

Let us assume that y = 0 and k » 0. Then for the expanding cylinder we have
’ /

Ay~cy+ 02 (A=0) (3.5)
Ay ~cyfo -+ egfod (B =1) ‘ (3.6)
Ag~afc,cos (VY Bh—4Ina)+csin (Y3 —4Ina)] a>1) : 3.7)
For contraction, for all A we obtain
Ay ~ 0 (¢, 00 (*/; V' 3kB o) + ¢, sin (¥ V/ 3kB o)) ’ 3.8)

Let us examine a planar disturbance, which corresponds to k = 0. The function A{p) = p)‘, and because
the fluid is incompressible the case of A = 0 drops out. For expansion of the cylinder and y = 0 we have

Ay~ o+ 02/q3 (A=1) (3.9)
Ay~ ainfeycos [, VR — )y 0] + ey sin [, VAR =)y a”]} a>1) (3.10)

For contraction and y = 0
(3.11)

Ay ~ci/o+6/a® (b =1)

Ag~a?[c,cos(Y3h—4dlia)+csin(Y3h—4lnw)] (>1) (3.12)

If y = 0 and o —0 the asymptotic form coincides with (3.6) and (3.7), respectively, while for y = 0
and o — = it coincides with (3.11) and (3.12).

Thus, stability is observed for contraction of the jet, while for expansion the axially symmetrical dis-
turbances become unstable with the imposition of surface tension, with the instability being of the exponen-
tial type. By calculating the coordinates of the center of mass one can verify that a shift of the center of
mass in the x, z plane takes place in the case when A =1 and only in this case; i.e., a displacement of the
jet as a whole occurs. For A >1 the surface tension stabilizes the flow.

It is known [5] that in the case of a stationary jet axially symmetrical disturbances are unstable for
wavelengths greater than the radius of curvature of the cross section.' However, in a nonstationary jet in-
stability is observed for any wavelength.

In conclusion the author thanks V. V. Pukhnachev for formulation of the problem and valuable advice.
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